tetrahedron$82584$ - traduzione in greco
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

tetrahedron$82584$ - traduzione in greco

SHAPE FORMED BY INTERSECTING FOUR BALLS
Reuleaux Tetrahedron; Meissner body; Meissner's tetrahedron; Meissner bodies; Reuleaux-Tetrahedron
  • Reuleaux Tetrahedron

tetrahedron      
n. τετράεδρο

Definizione

Tetrahedron
·noun A solid figure inclosed or bounded by four triangles.

Wikipedia

Reuleaux tetrahedron

The Reuleaux tetrahedron is the intersection of four balls of radius s centered at the vertices of a regular tetrahedron with side length s. The spherical surface of the ball centered on each vertex passes through the other three vertices, which also form vertices of the Reuleaux tetrahedron. Thus the center of each ball is on the surfaces of the other three balls. The Reuleaux tetrahedron has the same face structure as a regular tetrahedron, but with curved faces: four vertices, and four curved faces, connected by six circular-arc edges.

This shape is defined and named by analogy to the Reuleaux triangle, a two-dimensional curve of constant width; both shapes are named after Franz Reuleaux, a 19th-century German engineer who did pioneering work on ways that machines translate one type of motion into another. One can find repeated claims in the mathematical literature that the Reuleaux tetrahedron is analogously a surface of constant width, but it is not true: the two midpoints of opposite edge arcs are separated by a larger distance,

( 3 2 2 ) s 1.0249 s . {\displaystyle \left({\sqrt {3}}-{\frac {\sqrt {2}}{2}}\right)\cdot s\approx 1.0249s.}